

What is jRCS?

Lightweight remote connector for jBASE

Provides access to jBC-like functionality from GUI
and web applications

Adaptable to multiple platforms

Similar Products

PickODBC for Raining Data D3

UniObjects for IBM’s U2 suite

Why jRCS?

Increased demand for GUI and web-based
multi-tier applications

Improved end user experience

Ability to retain most of the legacy jBC code base

Smooth transition to the world of Windows and
other graphical environments

jRCS Features

Small and fast remote connector

Leverages established technologies
– TCP/IP
– XML

Easy portability

Open protocol

jRCS Architecture

TCP/IP + XML

N
et

w
or

k

jRCS Server

jBC Program/
Subroutine

jBASE Runtime

jRCS Client Library

GUI/Web
Client Program

User

jRCS Capabilities

Connection establishment and termination

User authentication via underlying OS

jBC environment setup

Calling jBC programs and subroutines

jRCS Capabilities (Cont’d)

Performing jQL-like conversions

Opening, reading and writing jBASE files

Full locking support

Creating select lists from files

jRCS Capabilities (Cont’d)

Selecting records using jQL

Selecting jBASE indexes

Managing common variable blocks

Fast client-side dynamic array support
(jBASE-supplied client libraries only)

Supported Server Platforms

Windows 2000, XP and Server 2003

32-bit AIX (64-bit server also available)

RedHat Enterprise Linux

Available Client Libraries

C/C++ client (low-level integration)

ActiveX client for VB 6.0 (Windows only)

Microsoft .NET client (Windows only)
– Framework 1.1 and 2.0 supported

Java client for JDK 1.4.2 and newer

Microsoft .NET Compact Framework client

Using jRCS

jRCS Authentication

Underlying OS user names and passwords are
used for authentication

Permissions are set up based on user credentials
supplied at logon

User is placed in his/her home directory

Environment Setup

Environment is set up based on user’s jRCS
resource file
– On Unix: $HOME/.jrcsrc
– On Windows: %HOME%\jrcsrc.cmd

All jBC environment variables can be set

jrcsrc.cmd on Windows

Follows the cmd.exe syntax for environment
variables

Percent sign substitutions can be used

Programs may not be executed

Example:

Set JBCOBJECTLIST = %HOME%\lib
Set JEDIFILEPATH = %HOME%

.jrcsrc on Unix

Follows the syntax of the Bourne shell (sh)

Dollar sign substitutions may be used

Program execution and backquote substitution is
not permitted

Example:

 JBCOBJECTLIST = $HOME/lib
export JBCOBJECTLIST
JEDIFILEPATH = $HOME
export JEDIFILEPATH

jRCS .NET Client –
Programmer’s View

Typical jRCS Session

Establish a connection and authenticate

Run business logic
– Call a subroutine
– Execute a program
– Open and read or write a file
– Generate a select list

Terminate the connection

Connection Establishment

Create a JConnection object

Call the Open method and pass the user name,
password and host name

Example:

 Dim _conn As New JConnection
_conn.Open(“localhost”, JConnection.JRCS_PORT, “test”, “test”, “”)

File Management

Use OpenFile method in JConnection to create a
JFile object

Read and write records using JFile methods

Example:

Dim _file As JFile = _conn.OpenFile(“CUSTOMER”)
Dim _record As JDynArray = _file.Read(“12345”, False, False)
_record.Replace(“New Customer Name”, 1)
_file.Write(“12345”, _record, False)

Dynamic Arrays

Create a JDynArray object

Use its methods to extract, replace and insert
data, locate fields, count attributes

Example:

Dim _array As New JDynArray
_array.Insert(“Field 1”, 1)
_array.Replace(“New Field 1”, 1)
Debug.WriteLine(_array.Extract(1))
Debug.WriteLine(“Number of attributes: “ & _array.DCount(_array.AM))

Select List Manipulation

Use Select or SSelect in a JFile object to create a
JSelectList

Use Execute method of JConnection to return a
JSelectList

Use For Each … Next or ReadNext method to
iterate through the list

Example: Dim _file As JFile = _conn.OpenFile(“CUSTOMER”)
Dim _list As JSelectList = _file.SSelect
For Each _key As String In _list
 Debug.WriteLine(_key)
Next

Calling Subroutines

Use Call method in JConnection to call a
subroutine

Parameters are passed as an array of strings or
JDynArray objects

Example:

Dim _parameter As New JDynArray(“This will be passed and returned”)
Dim _parms() As JDynArray = New JDynArray() { _parameter }
_conn.Call(“MY_SUBROUTINE”, _parms)
Debug.WriteLine(“Returned value: “ & _parms(0))

Executing Programs

Use Execute or ExecuteAndStore method in
JConnection

ExecuteAndStore allows captured output to be
read block-by-block

Select lists may be passed and returned

Example:

Dim _execResults As JExecuteResults = _
 _conn.Execute(“LIST CUSTOMER”, _
 JExecFlags.EXEC_GET_CAPTURE, Nothing)
Debug.WriteLine(“Captured text: “ & _execResults.CaptureString)

Error Handling

Objects of class JException are thrown back

Use the Message property of JException to get the
error message

Example:

Try
 Dim _record As JDynArray = _file.Read(“12345”, _
 False, False)
Catch _exception As JException
 Debug.WriteLine(“Error: “ & _exception.Message)
End Try

	jBASE jRCS
	What is jRCS?
	Similar Products
	Why jRCS?
	jRCS Features
	jRCS Architecture
	jRCS Capabilities
	jRCS Capabilities (Cont’d)
	jRCS Capabilities (Cont’d)
	Supported Server Platforms
	Available Client Libraries
	Using jRCS
	jRCS Authentication
	Environment Setup
	jrcsrc.cmd on Windows
	.jrcsrc on Unix
	jRCS .NET Client – Programmer’s View
	Typical jRCS Session
	Connection Establishment
	File Management
	Dynamic Arrays
	Select List Manipulation
	Calling Subroutines
	Executing Programs
	Error Handling

