


What is jRCS? 

Lightweight remote connector for jBASE 

Provides access to jBC-like functionality from GUI 
and web applications 

Adaptable to multiple platforms 

 

 



Similar Products 

PickODBC for Raining Data D3 

UniObjects for IBM’s U2 suite 



Why jRCS? 

Increased demand for GUI and web-based  
multi-tier applications 

Improved end user experience 

Ability to retain most of the legacy jBC code base 

Smooth transition to the world of Windows and 
other graphical environments 



jRCS Features 

Small and fast remote connector 

Leverages established technologies 
– TCP/IP  
– XML 

Easy portability 

Open protocol 
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jRCS Capabilities 

Connection establishment and termination 

User authentication via underlying OS 

jBC environment setup 

Calling jBC programs and subroutines 



jRCS Capabilities (Cont’d) 

Performing jQL-like conversions 

Opening, reading and writing jBASE files 

Full locking support 

Creating select lists from files 



jRCS Capabilities (Cont’d) 

Selecting records using jQL 

Selecting jBASE indexes 

Managing common variable blocks 

Fast client-side dynamic array support  
(jBASE-supplied client libraries only)  



Supported Server Platforms 

Windows 2000, XP and Server 2003 

32-bit AIX (64-bit server also available) 

RedHat Enterprise Linux 

 



Available Client Libraries 

C/C++ client (low-level integration) 

ActiveX client for VB 6.0 (Windows only) 

Microsoft .NET client (Windows only) 
– Framework 1.1 and 2.0 supported 

Java client for JDK 1.4.2 and newer 

Microsoft .NET Compact Framework client 



Using jRCS 



jRCS Authentication 

Underlying OS user names and passwords are 
used for authentication 

Permissions are set up based on user credentials 
supplied at logon 

User is placed in his/her home directory 



Environment Setup 

Environment is set up based on user’s jRCS 
resource file 
– On Unix: $HOME/.jrcsrc 
– On Windows: %HOME%\jrcsrc.cmd 

All jBC environment variables can be set 

 



jrcsrc.cmd on Windows 

Follows the cmd.exe syntax for environment 
variables 

Percent sign substitutions can be used 

Programs may not be executed 

Example: 

Set JBCOBJECTLIST = %HOME%\lib 
Set JEDIFILEPATH = %HOME% 



.jrcsrc on Unix 

Follows the syntax of the Bourne shell (sh) 

Dollar sign substitutions may be used 

Program execution and backquote substitution is 
not permitted 

Example: 

 JBCOBJECTLIST = $HOME/lib 
export JBCOBJECTLIST 
JEDIFILEPATH = $HOME 
export JEDIFILEPATH 



jRCS .NET Client – 
Programmer’s View 



Typical jRCS Session 

Establish a connection and authenticate 

Run business logic 
– Call a subroutine 
– Execute a program 
– Open and read or write a file 
– Generate a select list 

Terminate the connection 



Connection Establishment 

Create a JConnection object 

Call the Open method and pass the user name, 
password and host name 

Example: 

 Dim _conn As New JConnection 
_conn.Open(“localhost”, JConnection.JRCS_PORT, “test”, “test”, “”) 



File Management 

Use OpenFile method in JConnection to create a 
JFile object 

Read and write records using JFile methods 

Example: 

Dim _file As JFile = _conn.OpenFile(“CUSTOMER”) 
Dim _record As JDynArray = _file.Read(“12345”, False, False) 
_record.Replace(“New Customer Name”, 1) 
_file.Write(“12345”, _record, False) 



Dynamic Arrays 

Create a JDynArray object 

Use its methods to extract, replace and insert 
data, locate fields, count attributes 

Example: 

Dim _array As New JDynArray 
_array.Insert(“Field 1”, 1) 
_array.Replace(“New Field 1”, 1) 
Debug.WriteLine(_array.Extract(1)) 
Debug.WriteLine(“Number of attributes: “ & _array.DCount(_array.AM)) 



Select List Manipulation 

Use Select or SSelect in a JFile object to create a 
JSelectList 

Use Execute method of JConnection to return a 
JSelectList 

Use For Each … Next or ReadNext method to 
iterate through the list 

Example: Dim _file As JFile = _conn.OpenFile(“CUSTOMER”) 
Dim _list As JSelectList = _file.SSelect 
For Each _key As String In _list 
 Debug.WriteLine(_key) 
Next 



Calling Subroutines 

Use Call method in JConnection to call a 
subroutine 

Parameters are passed as an array of strings or 
JDynArray objects 

Example: 

Dim _parameter As New JDynArray(“This will be passed and returned”) 
Dim _parms() As JDynArray = New JDynArray() { _parameter } 
_conn.Call(“MY_SUBROUTINE”, _parms) 
Debug.WriteLine(“Returned value: “ & _parms(0)) 



Executing Programs 

Use Execute or ExecuteAndStore method in 
JConnection 

ExecuteAndStore allows captured output to be 
read block-by-block 

Select lists may be passed and returned 

Example: 

Dim _execResults As JExecuteResults = _ 
 _conn.Execute(“LIST CUSTOMER”, _ 
 JExecFlags.EXEC_GET_CAPTURE, Nothing) 
Debug.WriteLine(“Captured text: “ & _execResults.CaptureString) 



Error Handling 

Objects of class JException are thrown back 

Use the Message property of JException to get the 
error message 

Example: 

 
Try 
 Dim _record As JDynArray = _file.Read(“12345”, _ 
  False, False) 
Catch _exception As JException 
 Debug.WriteLine(“Error: “ & _exception.Message) 
End Try 
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