

What is jRCS?

Lightweight remote connector for jBASE

Provides access to jBC-like functionality from GUI
and web applications

Adaptable to multiple platforms

Similar Products

PickODBC for Raining Data D3

UniObjects for IBM’s U2 suite

Why jRCS?

Increased demand for GUI and web-based
multi-tier applications

Improved end user experience

Ability to retain most of the legacy jBC code base

Smooth transition to the world of Windows and
other graphical environments

jRCS Features

Small and fast remote connector

Leverages established technologies
– TCP/IP
– XML

Easy portability

Open protocol

jRCS Architecture

TCP/IP + XML

N
et

w
or

k

jRCS Server

jBC Program/
Subroutine

jBASE Runtime

jRCS Client Library

GUI/Web
Client Program

User

jRCS Capabilities

Connection establishment and termination

User authentication via underlying OS

jBC environment setup

Calling jBC programs and subroutines

jRCS Capabilities (Cont’d)

Performing jQL-like conversions

Opening, reading and writing jBASE files

Full locking support

Creating select lists from files

jRCS Capabilities (Cont’d)

Selecting records using jQL

Selecting jBASE indexes

Managing common variable blocks

Fast client-side dynamic array support
(jBASE-supplied client libraries only)

Supported Server Platforms

Windows 2000, XP and Server 2003

32-bit AIX (64-bit server also available)

RedHat Enterprise Linux

Available Client Libraries

C/C++ client (low-level integration)

ActiveX client for VB 6.0 (Windows only)

Microsoft .NET client (Windows only)
– Framework 1.1 and 2.0 supported

Java client for JDK 1.4.2 and newer

Microsoft .NET Compact Framework client

Using jRCS

jRCS Authentication

Underlying OS user names and passwords are
used for authentication

Permissions are set up based on user credentials
supplied at logon

User is placed in his/her home directory

Environment Setup

Environment is set up based on user’s jRCS
resource file
– On Unix: $HOME/.jrcsrc
– On Windows: %HOME%\jrcsrc.cmd

All jBC environment variables can be set

jrcsrc.cmd on Windows

Follows the cmd.exe syntax for environment
variables

Percent sign substitutions can be used

Programs may not be executed

Example:

Set JBCOBJECTLIST = %HOME%\lib
Set JEDIFILEPATH = %HOME%

.jrcsrc on Unix

Follows the syntax of the Bourne shell (sh)

Dollar sign substitutions may be used

Program execution and backquote substitution is
not permitted

Example:

 JBCOBJECTLIST = $HOME/lib
export JBCOBJECTLIST
JEDIFILEPATH = $HOME
export JEDIFILEPATH

jRCS .NET Client –
Programmer’s View

Typical jRCS Session

Establish a connection and authenticate

Run business logic
– Call a subroutine
– Execute a program
– Open and read or write a file
– Generate a select list

Terminate the connection

Connection Establishment

Create a JConnection object

Call the Open method and pass the user name,
password and host name

Example:

 Dim _conn As New JConnection
_conn.Open(“localhost”, JConnection.JRCS_PORT, “test”, “test”, “”)

File Management

Use OpenFile method in JConnection to create a
JFile object

Read and write records using JFile methods

Example:

Dim _file As JFile = _conn.OpenFile(“CUSTOMER”)
Dim _record As JDynArray = _file.Read(“12345”, False, False)
_record.Replace(“New Customer Name”, 1)
_file.Write(“12345”, _record, False)

Dynamic Arrays

Create a JDynArray object

Use its methods to extract, replace and insert
data, locate fields, count attributes

Example:

Dim _array As New JDynArray
_array.Insert(“Field 1”, 1)
_array.Replace(“New Field 1”, 1)
Debug.WriteLine(_array.Extract(1))
Debug.WriteLine(“Number of attributes: “ & _array.DCount(_array.AM))

Select List Manipulation

Use Select or SSelect in a JFile object to create a
JSelectList

Use Execute method of JConnection to return a
JSelectList

Use For Each … Next or ReadNext method to
iterate through the list

Example: Dim _file As JFile = _conn.OpenFile(“CUSTOMER”)
Dim _list As JSelectList = _file.SSelect
For Each _key As String In _list
 Debug.WriteLine(_key)
Next

Calling Subroutines

Use Call method in JConnection to call a
subroutine

Parameters are passed as an array of strings or
JDynArray objects

Example:

Dim _parameter As New JDynArray(“This will be passed and returned”)
Dim _parms() As JDynArray = New JDynArray() { _parameter }
_conn.Call(“MY_SUBROUTINE”, _parms)
Debug.WriteLine(“Returned value: “ & _parms(0))

Executing Programs

Use Execute or ExecuteAndStore method in
JConnection

ExecuteAndStore allows captured output to be
read block-by-block

Select lists may be passed and returned

Example:

Dim _execResults As JExecuteResults = _
 _conn.Execute(“LIST CUSTOMER”, _
 JExecFlags.EXEC_GET_CAPTURE, Nothing)
Debug.WriteLine(“Captured text: “ & _execResults.CaptureString)

Error Handling

Objects of class JException are thrown back

Use the Message property of JException to get the
error message

Example:

Try
 Dim _record As JDynArray = _file.Read(“12345”, _
 False, False)
Catch _exception As JException
 Debug.WriteLine(“Error: “ & _exception.Message)
End Try

	jBASE jRCS
	What is jRCS?
	Similar Products
	Why jRCS?
	jRCS Features
	jRCS Architecture
	jRCS Capabilities
	jRCS Capabilities (Cont’d)
	jRCS Capabilities (Cont’d)
	Supported Server Platforms
	Available Client Libraries
	Using jRCS
	jRCS Authentication
	Environment Setup
	jrcsrc.cmd on Windows
	.jrcsrc on Unix
	jRCS .NET Client – Programmer’s View
	Typical jRCS Session
	Connection Establishment
	File Management
	Dynamic Arrays
	Select List Manipulation
	Calling Subroutines
	Executing Programs
	Error Handling

